

Evaluation of amine-incorporated porous polymer networks (aPPNs) as sorbents for post combustion CO₂ capture

DOE AWARD NUMBER: DE-FE0026472

New Amine-decorated Porous Materials

• Porous Polymer Networks (PPNs)

A. M. Fracaroli, H. Furukawa, M. Suzuki, M. Dodd, S. Okajima, F. Gándara, J. A. Reimer, O. M. Yaghi, *J. Am. Chem. Soc.*, **2014**, *136*, 8863-8866. McDonald, T. M.; Long, J. R., *Nature* **2015**, *519* (7543), 303-308. Lu, W.; Sculley, J. P.; Yuan, D.; Krishna, R.; Wei, Z.; Zhou, H.-C., *Angew. Chem. Int. Ed.* **2012**, *51*, 7480.

Energy Efficiency

Project Objectives

- A scalable highly-robust and highly-efficient sorbent that can be delivered and validated through lab-scale testing
- A sorbent that will be economically feasible to scale-up and use in commercial carbon capture processes
- An ideal sorbent for post-combustion CO_2 capture that will approach the goal of 90% CO_2 capture with 95% CO_2 purity at a cost of electricity 30% less than baseline capture approaches

Project Overview

Timeline

- Start date: 10-1-2015
- End date: 9-30-2018

Budget

- Total Project funding \$1,807,616
 - DOE Share: \$1,446,086
 - Performer Share: \$361,530

Research Team

- Principle Investigator: Dr. Hong-Cai "Joe" Zhou
- Industrial partners: Koray "Ray" Ozdemir (*framergy*)
- Team leaders: Jeremy Willman, Gregory Day
- **Team members**: Elizabeth Joseph, Hannah Drake, Xinyu Yang, Jialuo Li, Zachary Perry, Yujia Sun, Dr. Ning Huang
- Past Members: Dr. Lanfang Zou, Dr. Mathieu Bosch, Dr. Xuan Wang

Resource Loaded Schedule

						Budget Period 1 Budget Period 2 Budget Period 3			od 3							
Task	Mileston	Start Date	End Date	Cos	st	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9 Q1) Q11	I Q12
1.0- Program Management and Planning	a, b	9/30/2015	9/30/2018	\$	187,853											
1.1-Project Management Plan		9/30/2015	9/30/2018													
1.2-Briefings and Reports		9/30/2015	9/30/2018													
2.0-Sorbent Synthesis and Optimization	c, f, J, k	9/30/2015	9/30/2016	\$	352,156											
3.0-Initial Sorbent Testing	d	9/30/2016	9/30/2016	\$	286,656											
3.1-Physisorption Tests	е	9/30/2015	6/30/2016													
3.2-Physical Property Characterization	g	1/30/2015	6/30/2016													
3.3-Initial TGA Tests	h	1/30/2016	6/31/16													
3.4-Initial Degredation Studies	i	3/30/2016	9/30/2016													
4.0-Sorbent Optimization	m	9/30/2016	9/30/2017	\$	202,042											
5.0-Initial Sorbent Scale-up	n, o	1/30/2017	6/31/2017	\$	191,585											
6.0-Initial Fixed Bed Testing	l, p	9/30/2016	9/30/2017	\$	65,000											
7.0-Attrition and Mechanical Hardness Tests	q	1/30/2017	6/30/2017	\$	34,300											
8.0-Sorbent Production	r	9/30/2017	6/30/2018	\$	221,330											
9.0-Optimal Fixed Bed Testing	S	1/30/2018	9/30/2018	\$	186,694											
10.0-Technology Assessment	t	3/30/2017	9/30/2018	\$	80,000											
			Total	\$1	,807,616											

PPN-150 Series

Tan, M. X., et al. ChemSusChem. 2013, 6, 1186

PPN-150-Series Synthesis Optimization

Select parameters optimized

- Reaction temperature
- Reaction time
- Reactor headspace
- Reactor pressure
- Stirring rates
- Solvent systems
- Templating agents
- Wash cycles
- Grinding conditions
- Amine loading times and conditions

Reactor Headspace Optimization

Reactor headspace optimization for PPN-150								
Headspace	Reaction vessel	BET Surface Area (m ² /g)	Pore Size Å	Pore Volume (cm ³ /g)				
81.7%	Pressure Tube	856.6	77.8	0.68				
50.0%	Pressure Tube	838.4	79.2	0.89				
11.6%	Pressure Tube	722.5	78.2	0.80				

• Headspace <80% yields optimal surface area

Solvent System Optimization

Solvent optimization data for PPN-150							
Solvent Mixture	BET Surface Area (m ² /g)	Pore Size Å	Pore Volume (cm ³ /g)				
Ethylene glycol	356.3	98.4	0.76				
DMSO	854.1	87.1	1.11				
Ethylene glycol/Ethanol	251.5	103.7	0.54				
DMSO/H ₂ O	113.9	84.7	0.14				
Ethylene glycol/H ₂ O	298.0	107.0	0.65				
Ethylene glycol/Methanol	278.6	104.2	0.60				
DMSO/Methanol	518.3	92.1	0.51				

• Neat DMSO yields highest surface area

Reaction Time Optimization

Time optimization for PPN-150								
Synthesis time (days)	BET Surface Area (m ² /g)	BET Pore Volume (cm ³ /g)	TGA CO ₂ Uptake (wt%)					
3	730	0.30	9.6%					
5	640	0.28	9.2%					
7	1014	1.04	5.3%					

• 3-5 days yields sorbent with highest "useful" porosity

Amine Loading Optimization

Shaker shows more consistent loading

PPN-150-Series Synthesis Optimization

Parameters optimized

- Reaction temperature → 150-170°C
- Reaction time → 3-5 days
- Reactor headspace → 80-90%
- Reactor pressure → Low pressure
- Stirring rates → Static
- Solvent systems → DMSO
- Templating agents → Cyanuric acid
- Grinding conditions → Ball-milled

Initial Cost Analysis

- Framergy[™] assists in sorbent scale-up and industrial partnership
- Initial cost analysis shows increasing cost reduction as synthesis scales-up
- Further cost reduction predicted with improved solvent recycling

Initial 50 g Scale-up

- The team utilized *framergy*'s 10 L jacketed solvothermal reactors to scale-up the sorbent synthesis
- Real-time monitoring with webcams

Reactor

Initial 50 g Scale-up: BET Evaluation

 Comparable BET isotherms between small and large batches

50 g DETA-Loaded PPN-150-series: Pore-Size Analysis

50 g Scale-up: TGA Cycling

Fixed-bed Testing Long-term Wet Cycling

Fixed-bed Regeneration Testing

Uptake values for regeneration testing are based upon 40°C adsorption testing performed after regeneration at the given temperature

Fixed-bed Regeneration Testing

Adsorption test runs are conducted after a 120°C regeneration step to ensure full desorption of CO₂

Regenerative Energy Demand

- Heat of adsorption at 150 mbar CO_2 and 40°C:
 - PPN-150-DETA: 0.66 MJ/kg CO₂
 - PPN-151-DETA: 1.40 MJ/kg CO₂
- Heat capacity increases exponentially with higher temperatures
- Regenerative energy demand at 85°C
 - PPN-150-DETA: 1.0 MJ/kg CO₂
 - PPN-151-DETA: 1.8 MJ/kg CO₂

(Typical CO_2 scrubber: 3.8 MJ/kg CO_2)

22

The Next Step: 200 g Scale-up

- The team utilized *framergy*'s 10 L jacketed solvothermal reactors to scale-up the sorbent synthesis to <200 g
- ~250 g batches of the sorbent were produced

Parameter	Value
Temperature	150°C
Time	5 day
Headspace	~80%
Melamine	201.62 g
Paraformaldehyde	108.00 g
Cyanuric acid	15.48 g
Dimethyl Sulfoxide (DMSO)	2080 mL

200 g Scale-up: Processing

framergy's Nutsche filter system utilized to wash sorbent (acetone, THF, DCM, methanol)

• Sorbent dried under vacuum before amine-incorporation

200 g Scale: BET Evaluation

Comparison of Pore Size Distribution

Summary

- PPN-150 series sorbents can achieve > 0.1 g/g CO_2 loading
 - A scalable alternative to "Gen 0" PPN sorbents
 - Synthesis optimization allows improved sorbent parameter control
 - Sorbent tuning during synthesis can produce unique performance properties
- Cycle testing can be conducted on lab scale batches allowing for fast data collection
 - Future cycle testing will be conducted using larger sorbent columns for better evaluation of bench scale sorbents
- Regeneration energy demand for PPN-150 series sorbents is promising to reach the DOE goal
- Bench scale synthesis and testing conducted partnership with *framergy*
 - 50 g and 200 g batches successful
 - 1 kg scale planned for BP3 work

Acknowledgement and Disclaimer

- Acknowledgment: "This material is based upon work supported by the Department of Energy under Award Number DE-FE0026472."
- Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Acknowledgements

Velch

NDATION

Advancing Chemistry. Improving Life.

NETL

U.S. DEPARTMENT OF

ENERG)

• DOE NETL

- Project Manager -Andrew Jones
- framergy
 - Ray Ozdemir

Publications

- W. M. Verdegaal, K. Wang, J.
 P. Sculley, M. Wriedt and H. C. Zhou. *ChemSusChem*, 2016, **9**, 636-643.
- Zou, L.; Yang, X.; Yuan, S.; Zhou, H.-C. CrystEngComm, 2017.
- Huang, N.; Day, G.; Yang, X.; Drake, H.; Zhou, H.-C. Science China Chemistry, 2017.
- Yang, X.; Zou, L.; Zhou, H.-C. *Polymer*, 2017.
- Zou, L.; Sun, Y.; Che, S.; Yang, X.; Wang, X.; Bosch, M.; Wang, Q.; Li, H.; Smith, M.; Yuan, S.; Perry, Z.; Zhou, H.-C. Advanced Materials, 2017

